CHAPTER SEVEN

VARIATION

Introduction:

This shows the relationship which exists between two variables or quantities.

- For example we may choose to consider the relationship between the number of gallons of petrol used by a travelling car and the distance travelled.

- This relationship or variation will be that, the greater the distance travelled, the greater will be the number of gallons of petrol used.

- Variation truly speaking is the same as proportion.

Types:

- Basically there are three types and these are: :
- 1. Direct variation.
- 2. Inverse variation.
- 3. Partial variation.

NB: Associated with each of these is what certain individuals refer to as joint variation

DIRECT VARIATION :

-This may also be referred to as direct proportion:

-Two variables or quantities such as x and y are said to vary directly, or are directly proportional if

1. both x and y increases at the same time e.g

Х	2	3	4	5	6	7
Y	4	8	12	16	20	24

2. both values of x and y decrease at the same time. i.e X decrease as y decreases. e.g.

Х	100	80	60	40	20	
Y	10	8	6	4	2	

Now consider two variables x and y. If x varies directly as y, then we write $x \propto y$, i. e x is directly proportional to y.

From $x \propto y$, in order to remove the proportional sign, we must introduce a constant,

i.e if $x \propto y$, $\implies x = ky$, where k = a constant, which may be referred to as the proportionality constant or the constant of proportionality.

Also if M varies directly as R, then $M \propto R \Longrightarrow M = K.R$, where K is a constant.

Q1. Two variables m and v are such that m varies directly as v. Given the constant as 10, calculate m when v = 20.

Solution

Since m varies directly as v

 \Rightarrow m \propto v, \Rightarrow m = kv

Where k is a constant.

Since $k = 10 \implies m = 10v$.

When $v = 20 \implies m = (10)(20) = 200$.

Q2. The population, P of a nation is directly proportional to the birth rate, R. If the constant is 20, determine the population in million if R = 5.

Solution.

P varies directly as R

 \Rightarrow p \propto R \Rightarrow p = KR,

Where k is a constant. Since $k = 20 \implies p = 20 R$.

When $R = 5 \implies P = (20) (5) = 100$

The population, P = 100 million.

Q3. The velocity v of a car is directly proportional to its mass m squared. Given the constant as 5 and the mass of the car as 60kg, calculate the velocity in m/s.

Solution.

V is directly proportional to m squared \Longrightarrow v \propto m²,

 \Rightarrow v = km², where k is a constant.

Since k = 5 => v = 5m.²

When m = $60 \implies v = 5(60)^2$,

⇒ v = 5 (3600) = 1800,

=> V = 18000 m\s.

Q4. The circumference of a circle varies directly as it radius cubed. Determine the circumference in cm, if the radius is 3cm. Take the proportionality constant to be 4.

Solution

Let c = the circumference and r = the radius.

Since the circumference varies directly as the radius cubed

 \Rightarrow C \propto r³ \Rightarrow c = kr³,

where k = the constant. Since r = 3cm and k = 4

$$\Rightarrow$$
 c = (4)(3)³ = (4)(27) = 108.

The circumference = 108cm.

Q5. The density of a material is directly proportional to the square root of its mass. Given the variation constant as 5 and the mass as 25g, determine the density in g cm $^{-3}$.

Let d = density and m = mass.

Since the density is directly proportional to the square root of the mass

 \Rightarrow d $\propto \sqrt{m}$,

 \Rightarrow d = k. \sqrt{m} , where k = the constant. Since k = 5 and m = 25 \Rightarrow d = 5. $\sqrt{25}$, \Rightarrow d = (5) (5) = 25,

 \Rightarrow d = 25 cm⁻³

Q6. The speed of a vehicle varies directly as it mass. The speed also varies as its length. Find the speed in km/h, if the car is of mass 120kg and it is 50 m long. Take the variation constant to be 10.

Solution.

Let s = speed, m = mass and I = length.

1. The speed varies directly as the mass \Rightarrow s \propto m.....(1)

11. Also the speed varies directly as the length \implies s \propto *l........(2)*

From 1 and 2 i.e s \propto m and s \propto /

 \Rightarrow s \propto m.*l.* Removing the proportion sign

 \implies s = k.m.*l*.

Bu since k = 10, m = 120 and l = 50

⇒ s = (10)(120)(50) = 60,000

 \implies s = 60,000 km/h.

Q7. The velocity of a car varies directly as its mass squared. It also varies directly as the length of the car. Given that the car has a length of 10m and a mass of 30kg, calculate its velocity in km/h. Take the proportionality constant as 200.

Solution

Let v = velocity, m = mass and I = length.

1. Since the velocity varies directly as the mass squared

 \Rightarrow v \propto m².

2. Also since the velocity varies directly as the length

 \Rightarrow V \propto I.

From 1. V \propto m² and from 2. V \propto *l*,=> v \propto m²*l* \Rightarrow v = km²*l*.

But m = 30, k = 200 and l = 10.

From $v = km^2 l \implies v = (200) (30)^2 (10)$,

⇒ v = (200) (900) (10),

⇒ v = 18 000 00 km/h.

8. The distance d covered by a vehicle varies directly as its length, *l* cubed as well as the square root of its mass m. Given that when m = 9kg, l = 2m and d = 120km,

1. determine the value of the constant.

11. deduce an expression for d in terms of m, I and k, where k is the constant

111. determine the distance travelled by the car in kilometers, when it is 40m long and has a mass of 60kg.

Solution

1.Since d varies directly as I cubed \Longrightarrow d $\propto l^3$

11. Since d also varies directly as the square root of m

 \Rightarrow d $\propto \sqrt{m}$.

Now since $d \propto l^3$ and $d \propto \sqrt{m}$,

 \implies d \propto /³./m => d = k./³./m.

But d = 120 when l = 2 and m = 9, and since $d = k l^3 \sqrt{m}$,

 \implies 120 = k(2)³($\sqrt{9}$) = k(8)(3) = 24k,

$$\implies 120 = 24k \implies k = \frac{120}{24} = 5.$$

∴K = 5.

11. We have already noted that $d = kl^3 \sqrt{m}$.

To deduce an expression for d in terms of k, I and , m, we only substitute the value of the constant (i.e. 5) into the just written expression.

From d = kl³ $\sqrt{m} \Longrightarrow$ d = 5l³ \sqrt{m} .

111. When I = 40m and m = 60kg,

 \Rightarrow d = 5 l³ \sqrt{m} \Rightarrow d = 5(40)³ $\sqrt{60}$,

⇒d = 5 (64000) (7.7),

⇒d = 2,464 000.

9. The quantities d, w, I and T are such that d varies directly as w squared. Also d varies directly as I as well as the square root of T. Given that d = 32 when w = 2, I = 1 and T = 4,

a. deduce an expression for d in terms of k, w, I and T, where k is the constant.

b. calculate d when w = 1, I = 10 and T = 25.

c. deduce an expression for I in terms of the constant, T and w.

d. calculate I when d =20, T=25 and w =1

solution

i. Since d varies directly as w squared \Longrightarrow d \propto w².

ii. Since d varies directly as I \Longrightarrow d \propto I.

iii. Since d also varies directly as the square root of T \Longrightarrow d $\propto \sqrt{T}$.

Now from d \propto w², d \propto l and d \propto $\sqrt{T} \implies$ d \propto w².l. \sqrt{T} ,

 \Rightarrow d = k w² I \sqrt{T} . We then determine the value of the constant .

Now d = 32, when w = 2, l = 1 and T = 4.

Since $d = kw^2 I \sqrt{T}$

 \Rightarrow 32= K(2)²(1)($\sqrt{4}$),

 $\Rightarrow 32 = k(4)(1)(2),$

$$\Rightarrow$$
 32 = 8k \Rightarrow k= 32/8, \Rightarrow k = 4.

a. For an expression for d, d = $kw^2 | \sqrt{T} \implies d = 4w^2 | \sqrt{T}$.

b. To calculate d when w = 1, l = 10 and T = 25,

 \Rightarrow d = 4(1)²(10)($\sqrt{25}$), \Rightarrow d = 4(1)(10)(5) = 200.

c. To deduce an expression for I, we must first consider the equation $d = kw^2 I \sqrt{T}$ and make I the subject.

From d = kw² I. \sqrt{T} , divide through using kw² \sqrt{T}

$$=> d = \frac{kw^2 I \sqrt{T}}{kw^2 \sqrt{T}}$$

$$=> \frac{\mathrm{d}}{\mathrm{k}\mathrm{w}^2\sqrt{\mathrm{T}}} = \mathrm{I}, \Longrightarrow \mathrm{I} = \frac{\mathrm{d}}{\mathrm{k}\mathrm{w}^2\sqrt{\mathrm{T}}}$$

Substituting k = 4

 $\Rightarrow I = \frac{d}{4w^2/T}$ which is an expression for I in terms of k, w and T.

d. When d =20, T = 25 and w = 1,

$$\Rightarrow I = \underline{d} \Rightarrow I = \underline{20}$$

$$4(1)^{2} (\sqrt{25})$$

$$= \underline{20} = \underline{20} = 1,$$

$$4(1)(5) = \underline{20}$$

$$\Rightarrow I = 1..$$

Inverse variation:

This may also be referred to as inverse proportion. Two variables such as x and y exhibit or show this type of variation, when as one variable increases, the other decreases.

Examples.

(1)						
х		100	90	80	70	60	50
Y		1	2	3	4	5	6
(2)							
	Х	200	300	400	500	600	
	Y	20	19	18	17	16	

If x varies inversely as y, we write $x \propto 1/y$.

In or In order to remove the proportional sign, we introduce a constant.

From i.e $x \propto 1/y \implies x = k.1/y, \Rightarrow$

=> x = k/y, where k is a constant.

Also if M varies inversely as Q, then M $\propto \frac{1}{Q}$, \Longrightarrow M = K. $\frac{1}{Q}$

 \Rightarrow M = K/Q, where k is a constant.

Q1 The velocity V of a car varies inversely as its mass m. Calculate the velocity in m/s, given that the mass of the car is 60kg and the variation constant is 240.

Solution.

Since v varies inversely as m,

$$\Rightarrow$$
 v \propto 1/m , \Rightarrow V = k. 1/m \Rightarrow V = k/m.

If If k = 240 and m = 60

$$\Rightarrow$$
 v = 240 = 4 \Rightarrow V = 4m/s.

60